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1. INTRODUCTION 
The use of two-phase flow models with unequal velocities and/or temperature has considerably 
expanded in nuclear safety analysis in recent years. It was soon pointed out that, in some of 
these models, the basic partial differential equations (pde's) have complex characteristics 
and---;extrapolating from the realm of linear analysis--it was argued that this feature was the 
ultimate source of instabilities encountered in numerical computation (Lyezkowski et al. 1978). 

Clearly, the discussion has so far focused on the mathematical, or rather, numerical question 
of stability. This paper wishes to discuss a physical argument based on causali ty .  Specifically, 
we shall show (without making linear approximations) that accurate computation of the 
solution, at some time t, of the quasi-linear, complex-characteristic, two-phase flow equations 
requires the knowledge of the solution at all future times (t' > t). Thus, regardless of whether 
the numerical schemes representing these pde's are stable, one is faced with the choice of either 
building a numerical scheme not  representative of the pde's or to violate a fundamental 
postulate of physics. 

Most two-phase flow models can be written in terms of first-order quasi-linear equations of 
the form: 

aU B~U=cu+D A-~ + ax [l] 

where U is an n-dimensional of the n dependent variables of the problem. D is also a 
n-dimensional source vector and A,  B, and C are n x n matrices. It is usually possible, for 
two-phase flow equations, to reduce the system to one where A is a constant matrix, and B and 
C are functions of U but not explicit functions of x and t. 

2. SMALL PERTURBATIONS-CAUSALITY REQUIREMENTS 
In order to exhibit the connection between causality and complex characteristics we first 

consider a model where C = 0 and where small perturbations are added to a constant, uniform 
term: 

U = Uo+ U, 

Uo is a space-time independent term and UI is assumed small compared to Uo. Then, to first 
order in UI,[I] becomes: 

A OUI - ~Uj - + ~o--~- = D [2] 

where Bo is the constant matrix, corresponding to B. 
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We now want to consider the Fourier spectral decomposition of UI. Since, in real s~tuatlons 
one encounters finite boundaries one should in fact use Fourier series for the spatial decom- 
position. We shall however assume that we are working in an infinite (one-dimensional) domain 
and use Fourier integrals. Let u(x, t) be any component of [/1. We define its Fourier transform 
by:~" 

Equation [2] now becomes: 

_~1 ~'+~ u(x, t) e- i ("-k~)dxdt  [3] t)(k, to) = 21r J_~ 

(itoA - ikBo)U(k,  to) = / ) (k ,  o~). 

Therefore, provided that the matrix or the l.h.s, is nonsingular, we obtain: 

U(k,  to) = [itoA - ikBo]-t D(k,  to) 

and finally; performing the inverse Fourier transform: 

= 1 ~ [itoA -ikBo]-11~(k, to)e ~' '-~) dk dto. U(x, t) 
J 

Defining now: 

and 

(~(k, to) = [ itoA - ikBo] -t 

[4] 

[5] 

G(x, t) = ~-~ f d(k, ~o) e"~"-~ dto dk [6] 

the integral of [4] can be written as a convolution integral. 

U(x, t) = f+_: G(x  - x' ,  t - t ' )D(x' ,  t') dx'  dt'. [7] 

Now, it can readily be seen that, unless G(x, t) = 0 for t < 0, values of D(x' ,  t') for t' > t will 
influence the solution at t. Thus causality implies that the (Green) function~ G is such that: 

G(x, t) = 0 for t < 0. [8] 

We shall not attempt to obtain an analytic form of G(x, t). We only want to investigate the 
necessary and sufficient conditions to fulfill the causality requirements specified by [8]. Let us 
then integrate [6] over dto for a fixed value of k. This is done as follows: first, we analytically 
continue the integrand G(k,~o)e i~'-k~ into the complex ~o-plane; then we replace the in- 
tegration on the real axis ( - ~, + ~) by a contour integration. The contour is defined by the real 
axis and a half circle at infinity (c). Symbolically, we write: 

fi+  i G(x, t) = dto--- -~ d~o + ¢1 dw [9] 

tA function u(x, t) and its Fourier transform are designated with the same letter. They are distinguished from one another 
by their arguments and by a tilde ( - ). 

~Note that G is in fact a matrix. The discussion applies to each component G~j of G. 
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In view of [6], this equation can only be valid if the integral over the half-circle at infinity is 
zero, that is, if the integrand vanishes there. Thus we consider two cases: 

(a) t > 0. In this case, we take (c) as the half-circle in the upper half oJ-plane. The integrand 
is zero on (c) because it behaves as limit of exp (-Im(o~) t), when Im(~o)--,o~. 

(b) t < 0. In this case, for the same reason, we take (c) in the lower half w-plane. Now, 
Cauchy's theorem states that the value of the contour integral is equal to 2~ri times the sum of 
the residues of the poles included inside the contour. Returning to [6], we see that the poles of 
the integrand occur whenever the determinant of the matrix (koA - ikBo) is zero. On the other 
hand, the characteristics of the pdes are given by the roots of det(AA - Bo). Thus, the poles in 
the w-plane and the characteristics of the pdes are simply related by the real variable k: co = kA. 
Finally, if the characteristics are complex, it is well known that they occur in complex 
conjugate pairs and therefore the integrand of the integral in [6] will have poles in both the 
upper and lower half oJ-plane. The contour integral of [9], in such a case, will be non-zero for 
both t > 0 and t < 0. This result specifically violates the causality requirement of [8]. 

if, on the other hand, the roots of the determinant are real (i.e. hyperbolic system) then one 
cannot perform the contour integration immediately because the poles are on the contour itself. 
One can show however (see e.g. Feynman & Hibbs 1965) 

f +~ f(~o ) e ~t 

0 for t < 0 

2i~'f(~oo) e ~ for t > 0. 

[10] 

In conclusion we found that, at least for small perturbations, existence of complex charac- 
teristics would violate the requirement of causality. The result is well-known for the linear case. 
We now extend it to the general case. 

3. THE GENERAL CASE 
The objective here is not to solve the pales but to exhibit the dependence of the solution of 

[1] on future events ff some characterics are complex. 
Let us start again from [1] and perform a space-time Fourier transformation on all 

nonconstant quantifies. We get: 

f koAU(k, ~) e i<~-~dco dk-fu,2~(k,,.,>OCk2,,o2> 

× e i~''+'~)t-u*'+*'~ d~ol dw2 dkl dk2- 

- f (kl, ¢01) O(ke, w2) e i~''+'~)t-j~k'+k'~ dwl dc02 dkl dk, = 

= f/~(co, k) e ~ ' -~ )  dw dk: 

Next, we perform a change of dummy variable (k2, Wz) in the second and third integrals: 
k = kl - k2, w = wl - w2. We find after regrouping: 

+ fd,odt {imAO(k, o~)-/do~,dk,[i(k- k,)B(kl, o~!) 

+ C'(KI, oJl)] U(k - kl, ~o - oJl)-/)(co, k)} = 0. 

Now, since e ~{,t-~; is a complete set of orthogonal functions, the term within wiggly brackets {} 
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must be null: 

iosA(](k, to) - f [i(k - kt)/~(kt, os~) + C(kt, ost)] U(k - kl, os - ost) dk~ dot 

= D(k, ~). 

We now solve this equation for a specific spectral component U(k, oJ) (i.e. with specific values 
of k and os). That is, we extract from the integral the U(k, to) corresponding to the first term and 
we get: 

[baA - ikB(o, o) - C(o, olaf(k, to) = l~(k, ~) + E(k, os) [i I] 

where 

f 
/~(k, ~o) = J[i(k - kl)B(kl, too + C(kl, osO] U(k - k~, to - os~) 

x [I - 8(kl, osO] dosl dkl 

8(ki, oot) is the Dirac delta function. Therefore, from [II]: 

Cl(k, os) = [koA - ikB(o, o) - C(o, o)]-~(D(k, to) +/~(k, os)) 

and finally, returning to (x, t) coordinates we obtain, as in the preceding section: 

U(x, t) = ~+~ G(x - x', t - t')[D(x', t') + E(x', t')] dx' dr' 
J-® 

where 

G(x, t) = I__. (+~ [io~A - ikB(o, o) - C'(o, o)] -l e/<'t-~) dk dos. 
2'n- J_~ 

[12] 

[13] 

det [AA -/~(o,  o)] = o 

are complex and occur in complex conjugate pairs. Then, by continuity, the roots of: 

iC( f -  O, O____.._~} "1 
det [ i ~ a  - i k B ( o , o )  - ~ ( o , o ) 1  = ik det [ ~  a - / ~ ( o , o ) +  | k J 

will also be complex for sufficiently large values of k, and will occur on both sides of the real 
~o-axis (although they would no longer occur in complex conjugate pairs). Depending on the 
structure of C, there may be a threshold kc such that the poles are all in the upper half of the 

tAlthough B(x, t) and/~(o, o) are not identical matrices, it can be shown that if det (,~A - B(x, t) = o has complex roots then 
det (AA - B(o, o) will also have complex roots provided the characteristics of the pdc's are complex almost everywhere. 

The discussion of the preceding section remains valid. The existence of poles in both the upper 
and lower half ~o-plane in the integral of [14], guaranteed by the presence of complex 
characteristics, would violate the causality condition of [8]. The existence of the matrix C(o, o) 
in the determinant of [iaJA- ikB(o, o ) - C ( o ,  0)] -I does not alter the conclusions. For let us 
suppose that some roots? of: 

[14] 
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~o-plane for Ik[ < k~, however we should emphasize that this result is obtained for the basic 
equations themselves, not for their finite-difference approximations. Therefore, there is no 
reason, mathematical or physical, that we should assume a cut-off k = kc in the inte~ai of [14]. 
The existence of complex characteristics is thus a sufficient condition to insure that at least 
large wavenumber phenomena violate causality, even taking into account non-linear features. 
On the other hand, the existence of a threshold kc may help explain why this effect is 
sometimes suppressed in some (non-convergent) finite-difference representations. 

4. CONCLUSIONS 
The preceding analysis did not attempt to solve the basic pde's of two-phase-flow. Instead 

we considered a transformation of these equations that exhibited the link between charac- 
teristics of the equations and the causality constraints. We have shown that causality is violated 
unless the characteristics are all real. The proof is not based on the linearized equations but 
take full account of the quasi-linear structure of the pde's. The proof is valid for the basic 
equations themselves. Thus, any finite-difference representation of these equations will be 
either inaccurate or acausal. 
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